ELSEVIER

Contents lists available at SciVerse ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Corrigendum

Highly efficient new indoline dye having strong electron-withdrawing group for zinc oxide dye-sensitized solar cell [Tetrahedron 67 (34) (2011) 6289–6293]

Shinji Higashijima ^{a,b,*}, Hidetoshi Miura ^a, Tomoki Fujita ^b, Yasuhiro Kubota ^b, Kazumasa Funabiki ^b, Tsukasa Yoshida ^c, Masaki Matsui ^b

The authors have identified some errors in the published version of their paper. The corrected text is provided below. Page 6289, left hand column, second paragraph:

The $E_{\rm ox}$ level should be more positive than ca. 0.2 V versus Fc/Fc^+ to show high IPCE, corresponding to HOMO level more stable than -4.9 eV by the density functional theory (DFT) calculations. Page 6291:

Table 1 Physical properties of indoline dyes

Dye	$\lambda_{\max} (\varepsilon)^a / nm$	λ_{max} on ZnO/nm	$F_{\rm max}^{\ a}/{\rm nm}$	$E_{\rm ox}^{\ \ b}/V$	$E_{\text{ox}} - E_{0-0}^{\text{c}} / \text{V}$	HOMO ^d /eV	LUMO ^d /eV
D205	395 (38,100), 554 (74,700)	540	641	+0.35	-1.73	-5.06	-2.36
DN317	373 (28,200), 521 (61,900)	505	608	+0.35	-1.85	-4.99	-2.15
DN319	400 (36,700), 566 (68,000)	542	662	+0.37	-1.66	-5.18	-2.53

 $^{^{\}rm a}$ Measured on 1.0×10 $^{\rm -5}$ mol dm $^{\rm -3}$ of substrate in chloroform at 25 $^{\circ}$ C.

Page 6291, left hand column, first complete paragraph:

The HOMO level of DN319 was calculated to be -5.18 eV, being sufficiently stable to show high IPCE.

^a Tsukuba Research Center, Chemicrea Inc., 2-1-6, Sengen, Tsukuba, Ibaraki 305-0047, Japan

^b Department of Material Science and Technology, Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

c Environmental and Renewable Energy System Division, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan

b Versus Fc/Fc⁺ in DMF.

^c Calculated on the basis of $E_{\rm ox}$ and $\lambda_{\rm int}$.

^d Calculated by the B3LYP/6-31G(d,p)//B3LYP/3-21G level.

DOI of original article: 10.1016/j.tet.2011.06.016.

^{*} Corresponding author. Tel.: +81 29 863 6040; fax: +81 29 863 6041. e-mail address: higashis@chemicrea.co.jp (S. Higashijima).